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Turbulent flow in a straight square duct driven by a pressure gradient exhibits remarkable flow structures
such as the presence of mean streamwise vorticity or secondary flows. These secondary circulations take the
form of two counter-rotating vortices near each corner of the duct. Even though their magnitudes are small
compared with primary streamwise motions, they have a significant influence on flow and scalar transport and
are challenging to accurately predict using computational approaches. In this paper, we employ a recently
developed formulation of the generalized lattice Boltzmann equation �GLBE� with forcing term to perform
large eddy simulation of fully developed turbulent flow in a square duct at a shear Reynolds number based on
duct width equal to 300. Subgrid scale effects are represented by the Smagorinsky eddy viscosity model, which
is modified by the van Driest damping function in the near-wall regions, in this GLBE approach, which is
based on multiple relaxation times. It was found that the GLBE is able to correctly reproduce the existence of
mean secondary motions and the computed detailed structure of first- and second-order statistics of main and
secondary motions are in good agreement with prior direct numerical simulations based on the solution of the
Navier-Stokes equations and experimental data.
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I. INTRODUCTION

Turbulent flow in noncircular straight ducts is character-
ized by the presence of mean cross-stream fluid motions. The
presence of such striking mean secondary vortical structures
in this class of turbulent flows has attracted much attention
over the years, not only due to an interest in the fundamental
understanding of their complex physical origins, but also
because of their impact on flow and scalar transport in prac-
tical situations. A classic example of mean streamwise vor-
ticity or secondary flows is that due to turbulent flow in a
square duct, which was observed in measurements by Ni-
kuradse in the 1920s �1�. Prandtl systematized various types
of secondary flows based on their origins into two basic cat-
egories and recognized the role of turbulent fluctuations in
generating secondary motions in noncircular conduits �2,3�,
which are often classified as Prandtl’s secondary flows of the
second kind. On the other hand, for completeness, it may be
noted that the secondary flows of the first kind in Prandtl’s
classification arise as quasi-inviscid skewed motions due to
transverse pressure gradients, or Coriolis or other inertial
forces �4�.

Statistically averaged turbulence-induced secondary flows
in a square duct manifest themselves with eightfold symme-

try. That is, the mean velocity field consist of two counter-
rotating vortices distributed in pairs in the four quadrants of
the duct and advect fluid momentum from the bulk region to
the corner areas of the duct along each corner bisector, which
is transported back to the bulk regions along wall bisectors.
The general features are not overly sensitive to the Reynolds
number, except that it should be high enough that the flow is
fully turbulent. On the other hand, interestingly, a recent
study has shown that if the Reynolds number is such that the
flow is only marginally turbulent, the secondary flow struc-
ture exhibits in the form of four vortices alternating in time,
instead of the eight vortices in the case fully developed tur-
bulent flow �5�. It may be noted that although the magnitude
of secondary velocities is generally small, of the order of
1%–3% of the mean streamwise velocity, they can contribute
considerably to the wall stress distribution and transport of
momentum, vorticity, energy, and passive scalars �6�.

The mechanism responsible for these secondary circula-
tions has been a subject of long-standing debate. Brundrett
and Baines �7� provided an explanation in terms of gradient
in Reynolds stress as a source that give rise to mean stream-
wise vorticity. Gessner �8� provided a more proper descrip-
tion of the origin of secondary flows in terms of the inhomo-
geneity and anisotropy of Reynolds stress, although the role
played by each of its components was not fully understood.
More recently, direct numerical simulations �DNS� of turbu-
lent flow in a square duct by Gavrilakis �9� and Huser and
Biringen �10� yielded quantitative description of the structure
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of secondary motions and fundamental insights into their ori-
gins. In particular, DNS of Gavrilakis �9� provided detailed
turbulence statistics of primary and secondary motions along
various wall and corner bisectors in the duct, while a quad-
rant analysis of Huser and Biringen �10� provided mecha-
nisms for generation of secondary flows in terms of bursting
and ejection events.

Turbulence modeling for computation of secondary flows
generated by turbulent fluctuations has been very challenging
and difficulties are faced with using common Reynolds-
averaged turbulence models. Some of the early modeling ef-
forts along with work on experimental measurements for this
problem were reviewed in Ref. �11�. For example, the well-
known and popular standard k-� model was unable to predict
any secondary flow. In a seminal analytical work, Speziale
�12� found that secondary flows in noncircular ducts result
from a nonzero difference in the normal stresses in the trans-
verse plane. With the use of nonlinear forms of the k-� equa-
tions that accounts for the delicate anisotropy in the normal
components of the Reynolds stress �13,14�, or by using more
involved transport equations for Reynolds stress, it was pos-
sible to capture the existence of secondary flows. However,
comparisons between computed results and experimental
measurements were not entirely satisfactory, which is prob-
ably due to the need provide a priori modeling information
from empirical correlations. Thus, in general, the presence of
considerable empiricism built into the Reynolds-averaged
turbulence modeling approaches substantially reduces their
predictive capabilities for this problem.

On the other hand, secondary flows actually evolve from
the collective behavior of individual realization of time-
dependent turbulence fields. Direct numerical simulation re-
solves all spatial and temporal scales and can thus predict all
possible motions and structural features due to turbulence
with high fidelity. On the other hand, the computational cost
of DNS limits its utility to low Reynolds numbers. In view of
this, it is often more practical to use large eddy simulation
�LES�, where fluid motions with length scales greater than
the grid size are computed and the effect of the unresolved
eddies at subgrid scales �SGS� are modeled. As such, large
scales represent the anisotropic part of the energy spectrum
and contain most of the energy of the fluid motions. The
smaller SGS scales are generally considered to be isotropic
in nature and relatively independent of the resolved part of
the spectrum. Thus LES represents a compromise with re-
duced empiricism in contrast to Reynolds-averaged models,
but with reduced computational cost in comparison with
DNS. Indeed, LES with using filtered Navier-Stokes equa-
tions �NSE� and Smagorinsky eddy viscosity model for SGS
effects �15� by Madabhushi and Vanka �16� has yielded
quantitative description of the structure of secondary motions
in a turbulent square duct.

In the present work, we employ an alternative computa-
tional method based on the lattice Boltzmann method �LBM�
to perform LES of turbulent flow and secondary motions in a
square duct. The LBM, which is based on kinetic theory, is a
relatively recent approach for computational fluid dynamics
and other problems �17,18�. It involves solving a kinetic
equation, the lattice Boltzmann equation �LBE�, which

represents the propagation of particle populations and their
collisions along discrete directions on a lattice. The long
term spatial and temporal dynamics of the LBE asymptoti-
cally corresponds to the fluid flow described by the weakly
compressible Navier-Stokes equations when the lattice is
constructed to respect sufficient rotational symmetries. The
attractiveness of LBM comes from its simplicity of the
stream-and-collide computational procedure, ability to repre-
sent boundary conditions in complex geometries, natural
amenability for implementation on parallel computers with
near-linear scalability, and its ability to more naturally model
complex physics derived from kinetic theory. As a result, it
has found a wide variety of applications, see, e.g., Refs.
�19,20�.

A commonly used form of the LBM employs a single
relaxation time �SRT� model �21� to represent the effect of
particle collisions, in which particle distributions relax to
their local equilibrium at a rate determined by a single pa-
rameter �22,23�. On the other hand, an equivalent represen-
tation of distribution functions is in terms of their moments,
such as various hydrodynamic fields including density, mass
flux, and stress tensor. The relaxation process due to colli-
sions can more naturally be described in terms of a space
spanned by such moments, which can, in general relax at
different rates. This forms the basis of the generalized lattice
Boltzmann equation �GLBE� based on multiple relaxation
times �MRT� �24–26�. By carefully separating the time
scales of various hydrodynamic and kinetic modes through a
linear stability analysis, the numerical stability of the GLBE
or MRT LBE can be significantly improved when compared
with the SRT LBE, particularly for more demanding prob-
lems at high Reynolds numbers �25�. The MRT LBE has also
been extended for multiphase flows with superior stability
characteristics �27–29�, and, more recently, for magnetohy-
drodynamic problems �30�. It has also been used for LES of
a class of turbulent flows �31,32�.

In particular, recently, Yu et al. �32� pioneered the devel-
opment of a robust approach based on MRT LBE for LES
using the three-dimensional nineteen velocity �D3Q19�
model. They employed a constant Smagorinsky model in
which the SGS Reynolds stress is computed based on the
local strain rate tensor. They related the strain rate tensor to
the nonequilibrium part of the moments and validated their
approach for turbulent free-shear flows. More recently,
Premnath et al. �33� developed an LES framework, which is
an extension of Yu et al. �32� for wall-bounded turbulent
flows, which are driven or modulated by external forces. In
particular, they considered the GLBE augmented by a forc-
ing term, which is executed in its natural moment space.
Such forcing term can represent the effect of general nonuni-
form forces on the turbulent fluid motion. Subgrid scale ef-
fects were represented by the Smagorinsky eddy viscosity
model, which is modified by the van Driest wall damping
function to account for reduction of near-wall turbulent
length scales in wall-bounded flows. The strain rate tensor in
this formulation is again related to the nonequilibrium mo-
ments with additional contributions from moment projec-
tions of forcing terms. They validated this framework for two
canonical wall-bounded flows.
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Unlike well established classical computational methods,
such as spectral or finite difference methods, which have
been thoroughly assessed for different complex turbulent
flows during the last few decades, much remains unknown
regarding computational approaches such as the LBM for
such flows. Thus, there is a great need for studying and as-
sessing LBM for complex turbulent flows in different con-
figurations. Indeed, in recent years, there have been consid-
erable efforts in this area, as briefly discussed in Ref. �33�.
Several independent studies based on the LBM have been
performed, each dealing with different configurations and
conditions, and much of such prior efforts have focused on
canonical problems in which turbulent flows are generally
isotropic and homogeneous. Among these efforts, Yu et al.
�32� employed their approach for LES of free-shear flow
consisting of a jet issued from a square orifice issued in free
space. On the other hand, the character of turbulent motion is
dramatically different in the presence of either stationary or
moving boundaries, which makes their statistical features to
be more anisotropic and inhomogeneous. Thus, Premnath et
al. �33� studied and assessed the MRT LBE with forcing
term for LES of turbulent channel flow and turbulent flow in
a cavity.

On the other hand, simulation of the detailed structure of
turbulence-induced secondary fluid motion in noncircular
conduits such as square ducts presents a particularly signifi-
cant challenge to the computational methods, since as men-
tioned above, their magnitudes are relatively small and arise
from turbulence anisotropy resulting from a delicate balance
of Reynolds stresses. Few detailed LES studies for turbulent
flow in a square duct. In particular, Madabhushi and Vanka
�16� employed a finite-difference approach for LES on a
relatively coarse grid and their results were found to be in
qualitative agreement with dated experiments. On the other
hand, Gavrilakis �9� and Cheesewright et al. �34� respec-
tively provide high resolution DNS and experimental data
for the detailed structure of first- and second-order statistics
of main and secondary fluid motions at various locations in
the duct. It is highly desirable to perform LES that make
direct comparison with such reliable high resolution data. In
particular, to the best of our knowledge, such a study is lack-
ing using the LBM.

Thus, one of the objectives of this present work is per-
form a systematic study of LES using MRT LBE or GLBE
with forcing term for turbulent flow in a square duct and
present results on the detailed structure of the first- and
second-order statistics of main and secondary fluid motions,
including quantities such as vorticity fluctuations. In particu-
lar, we consider a shear or friction Reynolds number of 300
based on duct width for this problem characterized by strong
turbulence anisotropy and make direct comparisons with

DNS and experimental data of Gavrilakis �9� and Cheese-
wright et al. �34�, respectively. We will also present numeri-
cal evidence of the size of near-wall quasistreamwise struc-
tures arising from wall generated turbulence for this problem
as computed in an LBM framework.

The paper is organized as follows: Section II will discuss
the computational procedure that uses GLBE with forcing
term. The computational conditions considered for simula-
tion of turbulent flow in a square duct are presented in Sec.
III. The computed results and their comparisons with prior
data are discussed in Sec. IV. Finally, summary and conclu-
sions of this paper are presented in Sec. V.

II. COMPUTATIONAL PROCEDURE

We shall now discuss the computational procedure based
on the generalized lattice Boltzmann equation with a forcing
term, which is supplemented by a subgrid scale �SGS� tur-
bulence model. For brevity, we will present only the major
elements of the approach, while the details can be found in
prior work on MRT �26,28� and in particular those of Yu et
al. �32�, and in the extension for wall-bounded flows sub-
jected to external forces by Premnath et al. �33�.

A. Generalized lattice Boltzmann equation with forcing term

The lattice Boltzmann method computes the evolution of
distribution functions as they move and collide on a lattice
grid. The collision process considers their relaxation to their
local equilibrium values, and the streaming process describes
their movement along the characteristic directions given by
a discrete particle velocity space represented by a lattice.
Figure 1 represents the three-dimensional nineteen particle
velocity �D3Q19� lattice model employed in this paper.

The particle velocity e�
� corresponding to this model may be

written as

e�
� = ��0,0,0� , � = 0,

��1,0,0�,�0, � 1,0�,�0,0, � 1� , � = 1, . . . ,6,

��1, � 1,0�,��1,0, � 1�,�0, � 1, � 1� , � = 7, . . . ,18.
� �1�
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FIG. 1. Schematic illustration of the three-dimensional nineteen
velocity �D3Q19� model.
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The GLBE computes collision in moment space, while the
streaming process is performed in the usual particle velocity
space �26�. The GLBE with forcing term �33� also computes
the forcing term, which represents the effect of external
forces as a second-order accurate time discretization, in mo-
ment space. We use the following notation in our description
of the procedure below: In particle velocity space, the local
distribution function f, its local equilibrium distribution feq,
and the source terms due to external forces S may be written
as the following column vectors: f= �f0 , f1 , f2 , . . . , f18�†, feq

= �f0
eq , f1

eq , f2
eq , . . . , f18

eq�†, and S= �S0 ,S1 ,S2 , . . . ,S18�†. Here,
the superscript † represents the transpose operator.

The moments f̂ are related to the distribution function f
through the relation f̂=Tf where T is the transformation ma-
trix. Here, and in the following, the “hat” represents the mo-
ment space. The transformation matrix T is constructed such

that the collision matrix in moment space �̂ is a diagonal

matrix through �̂=T�T−1, where � is the collision matrix in
particle velocity space. The elements of T are obtained in a
suitable orthogonal basis as combinations of monomials of

the Cartesian components of the particle velocity e�
� through

the standard Gram-Schmidt procedure, which are provided
by d’Humières et al. �26�. Similarly, the equilibrium
moments and the source terms in moment space may be

obtained through the transformation f̂eq=Tfeq, Ŝ=TS. The
components of moment projections of these quantities are

f̂= � f̂0 , f̂1 , f̂2 , . . . , f̂18�†, f̂eq= � f̂0
eq , f̂1

eq , f̂2
eq , . . . , f̂18

eq�†, and Ŝ
= �Ŝ0 , Ŝ1 , Ŝ2 , . . . , Ŝ18�†. These are provided in the Appendix.

The solution of the GLBE with forcing term can be writ-
ten in terms of the following “effective” collision and
streaming steps, respectively:

f̃�x�,t� = f�x�,t� + ��x�,t� �2�

and

f��x� + e���t,t + �t� = f̃��x�,t� , �3�

where the distribution function f= �f���=0,1,. . .,18 is updated
due to “effective” collision resulting in the postcollision dis-

tribution function f̃= � f̃���=0,1,. . .,18 before being shifted along
the characteristic directions during streaming step. � repre-
sents the change in distribution function due to collisions as
a relaxation process and external forces, and following Prem-
nath et al. �33� it can written as

��x�,t� = T−1	− �̂�f̂ − f̂eq��x�,t� + 
I −
1

2
�̂�Ŝ�x�,t�� , �4�

where I is the identity matrix and �̂=diag�s0 ,s1 , . . . ,s18� is
the diagonal collision matrix in moment space. It may be
noted that some of the relaxation times s� in the collision
matrix, i.e., those corresponding to hydrodynamic modes can
be related to the transport coefficients and modulated by
eddy viscosity due to the SGS model �discussed below� and
the rest chosen to maintain numerical stability �32,33�. Once
the distribution function is known, the hydrodynamic fields,
i.e., the density �, velocity u� , and pressure p can be obtained
as follows:

� = 
�=0

18

f�, j� � �u� = 
�=0

18

f�e�� +
1

2
F� �t, p = cs

2� , �5�

where cs=c /�3 with c=�x /�t being the particle speed, and �x
and �t are the lattice spacing and time step, respectively. In
its implementation, the computational procedure for the so-
lution of the GLBE with forcing term is optimized by fully
exploiting the special properties of the transformation matrix
T �32,33�.

B. Subgrid scale turbulence model

In this paper, we have incorporated the subgrid scale
�SGS� effects in the GLBE through the standard Smagorin-
sky model to perform LES �15�. The eddy viscosity �t arising
from this model can be written as

�t = �Cs	�2S̄, S̄ = �2SijSij , �6�

where Cs is a constant �taken equal to 0.12 in this work�.
Here, 	 is the cutoff length scale set equal to the lattice-grid
spacing, i.e., 	=�x, and Sij is the strain rate tensor given by
Sij =1 /2�� jui+�iuj�. In the LBM, the strain rate tensor can be
computed directly from the nonequilibrium part of the mo-
ments, without the need to apply finite differencing of the
velocity field. The specific expressions for the strain rate
tensor as a function of nonequilibrium moments and moment
projections of source terms are given in the Appendix

To account for the damping of scales near the walls, fol-
lowing an earlier work �35�, we have implemented the van
Driest damping function �36�

	 = �x	1 − exp
−
z+

A+�� �7�

where z+=zu* /�0 is the normal distance in wall units from
the wall, where u* is the friction velocity related to the wall
shear stress 
w through u*=�
w /�0, and A+ is taken equal to
25 �35�. While this approach has some empiricism built in,
for a class of wall-bounded turbulent flows, including the
turbulent duct flow considered here, it has been shown to be
reasonably accurate in prior work based on the solution of
grid-filtered Navier-Stokes equations �16�. The eddy viscos-
ity �t thus obtained is added to the molecular viscosity �0 to
obtain the hydrodynamic relaxation times in the collision
matrix � of the GLBE, as discussed in the previous section.

III. COMPUTATIONAL CONDITIONS

Let us now discuss the details of the computational setup
considered in this work. A schematic of the computational
domain representing a square duct of width W is shown in
Fig. 2. The domain is bounded by four wall boundaries and
two open boundaries. The direction along which the main
flow with velocity u moves is referred to as the streamwise
direction and is represented by the Cartesian coordinate x.
The directions parallel to the y and z axes will be designated
as spanwise and normal directions, respectively. To facilitate
discussion of the results, two normal wall bisectors divide
the y-z plane of the duct into four quadrants. The corner wall

PATTISON, PREMNATH, AND BANERJEE PHYSICAL REVIEW E 79, 026704 �2009�

026704-4



bisectors divide each quadrant into areas of equal size.
We consider fully developed turbulent flow of a fluid

with nominal density �0 and molecular shear viscosity �0,
which is driven with a pressure gradient −dp /dx, such that
the shear Reynolds number Re*=u*W /�0 is 300, where u* is
the mean shear or friction velocity. As explained below, in
computations we employ periodicity in the streamwise direc-
tion and hence the pressure gradient is effectively applied as
a simple body force. Here, u* is related to the wall stress 
w

through 
w=�0u*
2 . A simple force balance relates the mean

shear velocity to the imposed pressure gradient through
�0u*

2 =−W�dp /dx� /4. Zero velocity no-slip wall boundary
conditions were applied at each duct wall through a link-
based bounce back scheme �37� that places the walls half-
way between the lattice grid nodes. The instantaneous flow
field is considered to be periodic in the streamwise direction,
which is satisfied for the fully developed flow condition con-
sidered here and provided that there is spatial decorrelation
of turbulence statistics within the domain. The latter condi-
tion is satisfied if the streamwise two-point correlation
lengths, which represent the characteristic length of the long-
est streamwise turbulence structures, are properly accommo-

dated by the domain. In DNS, it was found that the correla-
tion length is roughly equal to 3W �10�. So, in order for the
two-point correlations to decay nearly to zero within half the
domain, the required streamwise length of the domain should
be about 6W, which is used in this work.

We considered a uniform grid and the computational do-
main is discretized by 74�74�432 nodes. The grid spacing
in wall units �referred to with a “�” superscript� is taken to
be 	+�	 /��=4.16, where ��=�0 /u* is the characteristic
viscous length scale. Due to the use of the link-bounce back
method for implementation of wall boundary condition, the
first lattice node is located at a distance of 	nw

+ =	+ /2, which
in our case is 2.08. For wall-bounded turbulent flows, it is
important to adequately resolve the near-wall, small-scale
turbulent structures, which is satisfied when the computa-
tions resolve the local dissipative or Kolmogorov length
scale = ��0

3 /��1/4, i.e., 	nw
+ �O�+� �38�. In particular, it is

generally recognized that 1.5+−2.0+ represents the upper
limit of grid spacing, above which the small scale turbulent
motions are not well resolved. It can be shown by simple
arguments that +=1.5–2.0 at the wall and that + increases
with increasing distance from the wall �39�. Indeed, Madab-
hushi and Vanka �16� used 	nw

+ =2 in their LES computations
of turbulent duct flow using filtered NSE, and our choice of
	nw

+ is very close to this value. Thus, our computational con-
ditions are expected to fairly resolve the near-wall small-
scale turbulent structures.

To perform the GLBE computations corresponding to
Re*=300, we chose the shear viscosity in lattice units �0 to
be 0.001, and �0 to 1.0, and set up an external driving force

F� =− dp
dx x̂=

4�0u
*
2

W x̂. The computations were initially carried out
for a period of 10T*, where T*=W /u* is the nondimensional
characteristic time, so that turbulence field reaches a statisti-
cally stationary state. They were carried out further for an-
other 6.7T* nondimensional times to obtain turbulence sta-
tistics. These sampling times were found to be adequate and
in keeping with other prior simulations: Madabhushi and
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FIG. 3. �Color online� Turbulent flow in a square duct at Re*=300. �a� Computed contours of the mean streamwise component of the
velocity field in the y-z cross section exhibiting corner bulges. �b� Computed mean secondary velocity. Vector field in the y-z cross section
in a quadrant of the duct.
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FIG. 2. Schematic of a square duct along with associated coor-
dinate system and nomenclature for turbulence simulation.
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Vanka �16� used a total duration �for initial run as well as
sampling� of 16T* for Re*=360 LES calculations, while
Huser and Biringen �10� used 15T* for the sampling period
for DNS at Re*=600. Gavrilakis �9� used a shorter duration
of 3T* for the initial run and 2.5T* for the averaging in his
DNS at Re*=300, as he used considerably longer domain
than other studies.

IV. RESULTS AND DISCUSSION

Figure 3�a� shows the computed contours of the mean
streamwise velocity in the y-z cross-sectional plane. This fig-
ure is obtained by averaging the velocity field over both time
and the statistically homogeneous or streamwise direction. A
fair degree of symmetry with respect to duct quadrants has
been achieved for these contours, similar to that seen in LES
based on filtered NSE �16�. The contours of streamwise ve-
locity can be seen to bend towards the walls near to each of

the four corners. Prandtl originally explained the distortion
of isospeed contours in a square duct to be due to the trans-
port of the faster-moving fluid from the central region toward
the corners along the corner bisectors �i.e., low shear region�,
while slower-moving fluid from the vicinity of the wall is
advected toward the center along the duct walls �i.e., high
shear region� �2�.

Figure 3�b� shows the computed mean cross stream or
secondary velocity vector field in the y-z cross sectional
plane in a quadrant of the duct. In this figure, and in the
following, unless otherwise, statistics of the fluctuating flow-
field is obtained by time averaging as well as spatial averag-
ing over the eight similar octants, in addition to the averag-
ing along the streamwise direction. It is evident from this
figure that the GLBE is indeed able to predict the existence
of secondary flows. It is also consistent with the explanation
offered earlier for the bulging of isospeed contours of
streamwise velocity field near the four corners of the duct:
clearly, two counter-rotating vortices at a duct quadrant ap-
pear to transfer fluid momentum from the bulk region of the
duct along the corner bisector, which is transported back into
the bulk region along the wall bisector. The lower vortex
with respect to the corner bisector is centered at about
�0.45,0.18�, where the numbers in parentheses are the y and z
coordinates normalized by the half-width of the duct. This
compares well with high-resolution DNS of Gavrilakis �9�,
which yielded �0.50,0.20�. Madabhushi and Vanka �16�, in
their LES using filtered NSE predicted the center at
�0.55,0.25�, while Huser and Biringen’s �10� DNS �at a
higher Reynolds number� gave a value of �0.40,0.20�. These
results are summarized in Table I. Thus, our computed re-
sults are in good general agreement with various prior data.

The presence of turbulence-induced secondary circula-
tions can also be manifested in terms of mean streamwise

TABLE I. Comparison of the coordinate location of the center
of the mean vortex �secondary flow� at the lower left corner ob-
tained in different computational studies.

Reference
Center of mean

vortex coordinates

DNS �Gavrilakis �9�� �0.50W ,0.20W�
DNS �Huser and Biringen �10�� �0.40W ,0.20W�
LES–filtered NSE

�Madabhushi and Vanka �16�� �0.55W ,0.25W�
LES-GLBE �this work� �0.45W ,0.18W�
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FIG. 4. �Color online� Com-
puted mean streamwise vorticity
contours in the lower left quadrant
of the duct for turbulent flow in a
square duct at Re*=300.
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vorticity contours, which is shown in Fig. 4, where the aver-
aging was performed over a quadrant.

It is clear that streamwise vorticity is generated on either
side of the corner bisector, which is consistent with the mean
secondary circulations observed in Fig. 3�b�. The presence of
mean streamwise vorticity owes its origin to a delicate bal-
ance between various components of velocity fluctuations or
Reynolds stress. In more detail, consider the mean stream-
wise vorticity equation, which is obtained by eliminating
pressure from the mean secondary flow momentum equa-
tions and substituting the mean streamwise vorticity �4,40�,

�uy��y��x� + �uz��z��x� = ��2��x� + �y�z��uy�
2� − �uz�

2��

+ ��y�y − �z�z���− uy�uz��� , �8�

where ��x�=�y�uz�−�z�uy� is the mean streamwise vorticity,
with �·� being the averaging operator. Note that if the flow is
laminar, Reynolds stresses are absent and ��x�=0, i.e., there
will be no mean streamwise vorticity. On the other hand, in
turbulent flow, the gradients in the Reynolds stress corre-
sponding to the second and third terms on the right-hand side
�RHS� of Eq. �8� act as sources for the production of mean
streamwise vorticity. The first term only mediates in the dif-
fusion of vorticity. Now, the second term involves the normal
stress anisotropy �i.e., �uy�

2�� �uz�
2�� and the third term in-

volves a secondary Reynolds stress component ��−uy�uz���. As
can be seen by symmetry considerations, i.e., replacing y
with z in the second term on the RHS of Eq. �8�, normal
Reynolds stress anisotropy is responsible for the generation
of mean streamwise vorticity, while the secondary Reynolds
stress component sustains secondary flow.

Now, let us discuss various computed turbulence statistics
profiles and compare them with prior data. Figure 5 shows
the first-order statistics, viz., the mean streamwise velocity
profile along the wall bisector, i.e., at y /W=0.5.

To be consistent with the data with which the GLBE so-
lution is compared, the velocity is normalized using the local
shear velocity at the wall bisector, which is computed using
the relation u


2=
 /�0, where 
 is the local wall stress. This is
due to the fact that, unlike the case of turbulent channel flow,
turbulent duct flow is characterized by a distribution in wall

shear stress. Wall normal distances are normalized by the
scale �0 /u
, so that they are provided in terms of the so-
called wall units. When compared with DNS of Gavrilakis
�9�, the mean velocity is slightly overpredicted, as is often
the case with LES that use coarser resolutions. On the other
hand, the DNS of Huser and Biringen �10� used a lower
resolution in the wall-normal direction than Gavrilakis �9�
and that is likely to a reason for the higher velocity it pre-
dicts, though there could also be Reynolds number effects.
Moreover, Huser and Biringen �10� had performed a prelimi-
nary DNS at a coarser resolution which had yielded higher
velocities than their final DNS solution. The LES of Madab-
hushi and Vanka �16� also predicted a somewhat higher mag-
nitudes of mean velocity than that of Gavrilakis data, which
is consistent with our results. The distribution of the local
wall shear stress along the length of one full quadrant is
provided in Fig. 6.

The computed local wall stress follows a similar trend to
that provided by Gavrilakis �9�, with the stress increasing
from zero at the corner to a maximum at about a third of the
distance to the wall bisector, and then peaking again near the
wall bisector. Our results showed somewhat lower values
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FIG. 5. Mean streamwise velocity profile along wall bisector for turbulent duct flow in a square duct at Re*=300. Lines represent GLBE
prediction, circles and crosses DNS data of Gavrilakis �9� and Huser and Biringen �10�, respectively, and triangles LES results based NSE
of Madabhushi and Vanka �16�.
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FIG. 6. �Color online� Variation of the local wall stress normal-
ized by the mean wall stress due to turbulent flow in a square duct
at Re*=300. Line represents GLBE prediction, symbols “�” and
“�” are DNS data of Gavrilakis �9� and Huser and Biringen �10�,
respectively, and “�” are LES results based on NSE of Madabhushi
and Vanka �16�.
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very close to the corner, which is more likely to be due to the
kinetic nature of the boundary conditions of the LBM around
the corner, than due to the use of wall damping function.
This is because the LES of Madabhushi and Vanka also em-
ployed the van Driest wall damping function near walls and
their results are closer to the DNS of Huser and Biringen. On
the other hand, except for these corner effects, the present
results are in overall better agreement with the DNS �Gav-
rilakis �9�� than that of Madabhushi and Vanka �16�. Figure 7
shows the comparison of computed components of root-
mean-square �rms� fluctuations along a wall bisector with
prior data.

The level of agreement between the GLBE and the DNS
data of Gavrilakis �9� can be seen to be good. In fact, the
GLBE predictions show significantly better agreement with
the DNS data than the LES results of Madabhushi and Vanka
�16�, despite the fact that the GLBE computations were car-
ried out with somewhat coarser resolution in the important
near-wall region. The significant overprediction of stream-
wise intensities by Madabhushi and Vanka �16� as compared

with the DNS is likely to be due to their use of a much
coarser resolution than that employed here. The variation of
rms turbulence intensities is very similar to that found in
other straight wall-bounded flows and comparisons with
fully developed turbulent flow in a plane channel data can be
found in Gavrilakis �9�. Gavrilakis had raised the question of
whether the local shear velocity at the wall center u
 or the
average shear velocity u* should be used for the normaliza-
tion of the data. It was found that the agreement with channel
flow turbulence intensities was best if u
 and u* were used
nearer and farther from the wall, respectively.

The distribution of the principal component of Reynolds
stress, i.e., �−ux�uz�� along a wall bisector is shown in Fig. 8.

The variation of Reynolds stress in the duct at this loca-
tion is very similar to that for a turbulent channel flow,
with its maximum occurring at about 1/5th of the duct half-
width from the wall. The LES results obtained using the
GLBE are in reasonably good agreement with the DNS of
Gavrilakis �9�.

Accurate representation of near-wall vorticity fluctuations
is difficult in LES, as they are very sensitive to the dynamics
of small-scale motions generated at the walls, requiring high
resolution �41,42�. Figure 9 shows the variation of compo-
nents of rms vorticity fluctuations along a wall bisector of
the duct.
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FIG. 8. Profile of mean Reynolds stress along the wall bisector
in the y-z plane for turbulent flow in a square duct at Re*=300.
Lines are GLBE predictions and circles are DNS data of Gavrilakis
�9�.
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FIG. 9. Profiles of root-mean-square vorticity fluctuations along
the wall bisector in the y-z plane for turbulent flow in a square duct
at Re*=300. Lines are GLBE predictions and symbols are DNS
data of Gavrilakis �9�.
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corner bisector for turbulent flow in a square duct at Re*=300.
Circles are DNS data of Gavrilakis �9�.
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It can be seen from this figure that near-wall turbulent
fluctuations are strongly anisotropic and inhomogeneous,
while away from the walls they tend to be more isotropic.
The GLBE is able to correctly reproduce sharp variations
in all the components of rms vorticity fluctuations, when
compared with the DNS data of Gavrilakis �9�. Quan-
titatively, the computed results for the wall-normal vorti-
city component are in very good agreement, as this com-
ponent does not involve derivatives of the velocity field
with respect to the wall-normal direction. On the other
hand, for the other two components, there is some under-

prediction when compared to finely resolved DNS, a feature
very similar to that observed in LES of turbulent channel
flow �41,42�.

Quantitative prediction of the distribution of the magni-
tude of secondary flow velocities is challenging partly be-
cause of the complex character of its origin, but also because
it is relatively small. Figure 10 shows the variation of the
magnitude of the secondary velocity along a corner bisector,
normalized with the mean shear velocity u*. The results are
compared with those of Gavrilakis and reasonably good
agreement can be seen.
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FIG. 11. Profiles of mean
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locations in the y-z plane in a duct
quadrant for turbulent flow in a
square duct at Re*=300. Lines are
GLBE predictions, circles are
DNS data of Gavrilakis �9�, and
crosses experimental data of
Cheesewright et al. �34�.
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FIG. 12. Profiles of mean sec-
ondary velocities at different loca-
tions in the y-z plane in a duct
quadrant for turbulent flow in a
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crosses experimental data of
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Let us now make quantitative comparisons of the com-
puted detailed structure of the first- and second-order
statistics of main and secondary motions at different
locations in the duct with high resolution DNS data of
Gavrilakis �9� and experimental data of Cheesewright et al.
�34�, which was conducted at a similar, though, slightly
lower, Reynolds number. Benchmark data for comparison
are available at selected locations in the duct. Figures
11 and 12 present the profiles of mean main �streamwise�
and secondary velocities, respectively, at four selected
spanwise locations, i.e., Y / �W /2�=0.3,0.5,0.7,1.0, in a

quadrant of the duct. The velocities are normalized by the
mean value of the velocity at the center of the duct Uc.
It can be seen that the GLBE predictions are in excel-
lent quantitative agreement with DNS and measurements,
not only for the streamwise velocities, but also for the sec-
ondary velocities. In particular, the secondary velocities vary
quite significantly depending on the location, which the
GLBE is able to quantitatively reproduce with very good
accuracy. It is also evident from Fig. 12 that the maximum
mean secondary velocity is about 1% of the mean stream-
wise velocity.
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square streamwise velocity fluc-
tuations at different locations in
the y-z plane in a duct quadrant
for turbulent flow in a square duct
at Re*=300. Lines are GLBE pre-
dictions, circles are DNS data of
Gavrilakis �9�, and crosses experi-
mental data of Cheesewright et al.
�34�.
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Similarly, the second-order statistics of velocity fluctua-
tions, viz., rms main �streamwise� and secondary velocity
fluctuations at four selected spanwise locations, i.e.,
Y / �W /2�=0.3,0.5,0.7,1.0 in a quadrant of the duct are
shown in Figs. 13 and 14.

It can be seen that the maximum turbulent intensity for
the primary flow direction is about 15% of the mean stream-
wise velocity at the duct center. On the other hand, the maxi-
mum turbulent intensity for the cross-stream direction is
about one-third that for the primary flow direction. Again,
the computed turbulent intensities for both primary and sec-
ondary components are in excellent quantitative agreement
with both the DNS �9� and measurement data �34�.

Our discussions of secondary motions generated due to
turbulence have so far been concerned mainly with the aver-
aged quantities. In reality, turbulent flows are far from ho-
mogeneous as is illustrated in Fig. 15, which show instanta-
neous component of the streamwise vorticity at different
cross sections.

Wall-bounded flows typically contain quasistreamwise
vortices of a few hundred wall units in length �43,44� and
such structures are clearly evident in the figures. The lengths
of these turbulent structures, as shown in Fig. 15, are about
50 lattice grid spacings, or 200 wall units, which is in
keeping with the expected values. These vortices generate
sweeps �movements of high speed fluid toward the wall� and
ejections �movements of low speed away from the wall�
which affect momentum transfer, increasing drag. While the
mechanisms responsible for secondary flows are frequently
described in terms of Reynolds-averaged Reynolds stresses
and vorticities, a more detailed and fundamental explanation
necessarily involves discussions of the discrete turbulent
structures, such as those based on a quadrant analysis �10�.

V. SUMMARY AND CONCLUSIONS

In this work, we performed time-dependent, eddy captur-
ing simulations of turbulent flow and secondary motions in a
square duct at shear Reynolds number of 300 using a gener-
alized lattice Boltzmann equation �GLBE� with forcing term.
Turbulence-induced mean secondary flows in a square duct
results from anisotropy and inhomogeneity in the Reynolds

stresses and is challenging to accurately simulate using com-
putational methods. The GLBE is solved in conjunction with
a Smagorinsky eddy viscosity model, supplemented with a
van Driest damping function, which is used to represent sub-
grid scale turbulence effects. It was found that the GLBE
was able to correctly predict the existence of secondary
flows, with its mean motion exhibiting characteristic eight-
fold symmetry in the form of counter-rotating vortices with
respect to corner bisectors of duct quadrants. One of its con-
sequences, i.e., the bulging of isospeed contours of the mean
streamwise velocity was also found to be reproduced in com-
putations. Computed profiles of turbulence statistics, includ-
ing mean streamwise and secondary velocities, Reynolds
stress, and root-mean-square turbulent velocity fluctuations
and vorticity fluctuations were found to be in good agree-
ment with prior DNS and measurement data. Moreover, the
GLBE predictions of detailed structure of the turbulent in-
tensities of both streamwise and secondary velocity compo-
nents at various locations in the duct are in good quantitative
agreement with prior data. Thus, it appears that the GLBE is
a reliable and accurate computational method for simulation
of complex mean and fluctuations of main and turbulence-
induced secondary motions flows due to turbulent flow in a
square duct.
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APPENDIX: MOMENTS, EQUILIBRIUM MOMENTS,
MOMENT PROJECTIONS OF SOURCE TERMS AND
STRAIN RATE TENSOR FOR THE D3Q19 LATTICE

The components of the various elements in the moments
are as follows �26�:

FIG. 15. �Color online� Instantaneous streamwise vorticity in x-y and x-z planes midway between duct walls and in y-z cross section for
turbulent flow in a square duct at Re*=300. Flow is from left to right.
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f̂0 = �, f̂1 = e, f̂2 = e2, f̂3 = jx, f̂4 = qx, f̂5 = jy ,

f̂6 = qy, f̂7 = jz, f̂8 = qz, f̂9 = 3pxx, f̂10 = 3�xx,

f̂11 = pww, f̂12 = �ww, f̂13 = pxy, f̂14 = pyz,

f̂15 = pxz, f̂16 = mx, f̂17 = my, f̂18 = mz.

Here, � is the density, e and e2 represent kinetic energy that
is independent of density and square of energy, respectively;
jx, jy, and jz are the components of the momentum, i.e., jx
=�ux, jy =�uy, jz=�uz ,qx ,qy ,qz are the components of the
energy flux, and pxx, pxy, pyz, and pxz are the components of
the symmetric traceless viscous stress tensor; the other two
normal components of the viscous stress tensor, pyy and pzz,
can be constructed from pxx and pww, where pww= pyy − pzz.
Other moments include �xx, �ww, mx, my and mz. The first
two of these moments have the same symmetry as the diag-
onal part of the traceless viscous tensor pij, while the last
three vectors are parts of a third rank tensor, with the sym-
metry of jkpmn.

The corresponding components of the equilibrium mo-
ments, which are functions of conserved moments, i.e., den-
sity � and momentum j�, are as follows �26�:

f̂0
eq = �, f̂1

eq � eeq = − 11� + 19
j� · j�

�
,

f̂2
eq � e2,eq = 3� −

11

2

j� · j�

�
, f̂3

eq = jx, f̂4
eq � qx

eq = −
2

3
jx,

f̂5
eq = jy, f̂6

eq � qy
eq = −

2

3
jy, f̂7

eq = jz,

f̂8
eq � qz

eq = −
2

3
jz, f̂9

eq � 3pxx
eq =

�3jx
2 − j� · j��

�
,

f̂10
eq � 3�xx

eq = 3
−
1

2
pxx

eq�, f̂11
eq � pww

eq =
�jy

2 − jz
2�

�
,

f̂12
eq � �ww

eq = −
1

2
pww

eq , f̂13
eq � pxy

eq =
jxjy

�
,

f̂14
eq � pyz

eq =
jyjz

�
, f̂15

eq � pxz
eq =

jxjz

�
,

f̂16
eq = 0, f̂17

eq = 0, f̂18
eq = 0.

The components of the source terms in moment space are

functions of external force F� and velocity fields u� , respec-
tively, as follows �33�:

Ŝ0 = 0, Ŝ1 = 38�Fxux + Fyuy + Fzuz� ,

Ŝ2 = − 11�Fxux + Fyuy + Fzuz�, Ŝ3 = Fx, Ŝ4 = −
2

3
Fx,

Ŝ5 = Fy, Ŝ6 = −
2

3
Fy, Ŝ7 = Fz, Ŝ8 = −

2

3
Fz,

Ŝ9 = 2�2Fxux − Fyuy − Fzuz�, Ŝ10 = − �2Fxux − Fyuy − Fzuz� ,

Ŝ11 = 2�Fyuy − Fzuz�, Ŝ12 = − �Fyuy − Fzuz� ,

Ŝ13 = �Fxuy + Fyux�, Ŝ14 = �Fyuz + Fzuy� ,

Ŝ15 = �Fxuz + Fzux�, Ŝ16 = 0, Ŝ17 = 0, Ŝ18 = 0.

The components of the strain rate tensor used in subgrid
scale �SGS� turbulence models can be written explicitly in
terms of nonequilibrium moments augmented by moment
projections of source terms as �33�

Sxx � −
1

38�
�s1ĥ1

�neq� + 19s9ĥ9
�neq�� , �A1�

Syy � −
1

76�
�2s1ĥ1

�neq� − 19�s9ĥ9
�neq� − 3s11ĥ11

�neq��� , �A2�

Szz � −
1

76�
�2s1ĥ1

�neq� − 19�s9ĥ9
�neq� + 3s11ĥ11

�neq��� , �A3�

Sxy � −
3

2�
s13ĥ13

�neq�, �A4�

Syz � −
3

2�
s14ĥ14

�neq�, �A5�

Sxz � −
3

2�
s15ĥ15

�neq�, �A6�

where

ĥ�
�neq� = f̂� − f̂�

eq +
1

2
Ŝ�, � � �1,9,11,13,14,15� . �A7�

Here, f̂�, f̂�
eq, and Ŝ� are components of moments, their local

equilibria, and moment projections of source terms due to
external forces, respectively, which are given above. s� are
elements of the collision matrix �=diag�s0 ,s1 , . . . ,s18� in
moment space. The expressions for the strain rate tensor are
generalizations of those given in Yu et al. �32�.
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